Math 100. Tangent Lines

© Forrester Educational 2020 (www.MathBC.com)
[\#1] Determine the equation of the line secant to $y=x^{2}-4 x$ as x -changes form -1 to 3 .
$() \quad m=,\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad y-y_{0}=m\left(x-x_{0}\right)$
(,)
[\#2] Determine the equation of the line tangent to $y=x^{2}-4 x$ at $x=3$
$() \quad m=,\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad y-y_{0}=m\left(x-x_{0}\right)$

Determine the slope of the tangent lines

$$
\text { to } f(x)=\begin{gathered}
{[\# 3]} \\
x^{2}-2 x-1
\end{gathered} \text { at }(3,2)
$$

$$
\text { to } f(x)=x^{2}+3 x \text { at }(-1,-4)
$$

use tangent formula \#1
use tangent formula \#2

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$[\# 5]$
to $f(x)=x^{3}+2$ at $(1,3)$
use tangent formula \#1
$m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
[\#6]
to $f(x)=3 x^{2}-2 x$ at $(-1,5)$
use tangent formula \#2

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$$
\begin{gathered}
{[\# 7]} \\
\text { to } f(x)=\frac{4}{x-2} \text { at }(3,4)
\end{gathered}
$$

use tangent formula \#1

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

[\#8]

$$
\text { to } f(x)=\sqrt{x+5} \text { at }(-1,2)
$$ use tangent formula \#1

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

$$
\begin{gathered}
{[\# 9]} \\
\text { to } f(x)=\frac{1}{\sqrt{x-1}} \text { at }(2,1)
\end{gathered}
$$

$$
\text { to } f(x)=\frac{[\# 9]}{\sqrt{x-1}} \text { at }(2,1)
$$

use tangent formula \#1

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

use tangent formula \#2
$m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
[\#1] Determine the equation of the line secant to $y=x^{2}-4 x$ as x-changes form -1 to 3 .
$(-1,5)$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-3-5}{3-1}=\frac{-8}{4}=-2
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{0}=M\left(x-x_{0}\right) \\
& y-5=-2(x+1)
\end{aligned}
$$

$$
(3,-3)
$$

[\#2] Determine the equation of the line tangent to $y=x^{2}-4 x$ at $x=3$

$$
\left.\begin{array}{c|l}
(3,-3) & \begin{array}{l}
m=\frac{(3+h)^{2}-4(3+h)--3}{3+h-3} \\
\left(3+h(3+h)^{2}-4(3+h)\right.
\end{array} \\
m=\frac{9+6 h+h^{2}-12-4 h+3}{3+h-3} \\
m=\frac{h^{2}+2 h}{h}=\frac{h(h+2)}{h} \\
m=0+2=2
\end{array} \right\rvert\, \begin{aligned}
&
\end{aligned} \quad y+3=2(x-3)
$$

Determine the slope of the tangent lines

$$
f(x)=\frac{[\# 3]}{=x^{2}-2 x-1} \quad \text { at }(3,2)^{[\# 4]} \quad f(x) \stackrel{f(9)}{=x^{2}+3 x} \quad \text { at }(-1,-2)
$$

use tangent formula \#1

$$
\begin{aligned}
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
m=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
m=\lim _{h \rightarrow 0} \frac{(3+h)^{2}-2(3+h)-1-2}{h} \\
m=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-6-2 h-1-2}{h} \\
m=\lim _{h \rightarrow 0} \frac{h^{2}+4 h}{h} \\
m=\lim _{h \rightarrow 0} \frac{h(h+4)}{h}=\Delta
\end{aligned}
$$

use tangent formula \#2

$$
\begin{aligned}
& m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& m=\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x+1} \\
& m=\lim _{x \rightarrow-1} \frac{x+3 x+1-2}{x+1} \\
& m=\lim _{x \rightarrow-1} \frac{(x+1)(x+2)}{x+1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { [\#q] } 4 \\
& \text { to } f(x)=\frac{4}{x-2} \text { at }(3,4) \\
& \text { use tangent formula \#1 } \\
& m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& m=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& m=\lim _{h \rightarrow 0} \frac{\frac{4}{3+h-2}-4}{h} \\
& m=\operatorname{Lim}_{h \rightarrow 0} \frac{\frac{4}{h+1}-4}{h} \\
& m=\operatorname{Lim}_{h \rightarrow 0} \frac{4-4(h+1)}{h(h+1)} \\
& m=\lim _{h \rightarrow \infty} \frac{4-4 h-4}{h(h+1)} \\
& M=\operatorname{Lim}_{n \rightarrow 0}-4 h \\
& m=-\frac{4}{0+1}=-4
\end{aligned}
$$

[\#8]
to $f(x)=\sqrt{x+5}$ at $(-1,2)$
use tangent formula \#1

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& m=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} \\
& m=\lim _{h \rightarrow 0} \frac{\sqrt{-1+h+5}-2}{h} \\
& m=\lim _{h \rightarrow 0} \frac{\sqrt{h+4}-2}{h} \cdot \frac{\sqrt{h+4}+2}{\sqrt{h+4}+2}
\end{aligned}
$$

$$
m=\lim _{h \rightarrow 0} \frac{h+4-4}{h(\sqrt{h+4}+2)}
$$

$$
m=\lim _{h \rightarrow e} \frac{h}{h(\sqrt{h+1}+2)}
$$

$$
n=\frac{1}{\sqrt{a+9}+2}=\frac{1}{4}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{x-1}} \text { at }(2,1) \\
& M=\lim _{h \rightarrow 0} \frac{\frac{f(2+h)-f(2)}{h}}{M=h \rightarrow 0} \frac{\frac{1}{\sqrt{2+h-1}}-1}{h} \\
& M=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{h+1}-1}}{h}
\end{aligned}
$$

MuLtiply by LCD

$$
m=\lim _{h \rightarrow 0} \frac{1-\sqrt{h+1}}{h \sqrt{h+1}}
$$

multiply by conjugate

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{1-(h+1)}{h \sqrt{h+1}(1+\sqrt{h+1})} \\
& m=\lim _{h \rightarrow 0} \frac{-k}{\sqrt{h+1}(1+\sqrt{h+1})} \\
& m=\frac{-1}{\sqrt{0+1}(1+\sqrt{0+1})} \\
& m=\frac{-1}{2}
\end{aligned}
$$

