[\#2] Fred has 48 m of fence to rope off a rectangular swimming area against the sea wall. He need only rope three sides of the rectangular area. Determine the maximum area he can enclose?
[\#3] A team charges $\$ 20$ for a ticket. Usually they sell 120 tickets per game. They owners determined that for every $\$ 5$ they raise the price, they'll sell 10 fewer tickets.
(a) Determine the maximum revenue.
(b) What ticket price will maximise revenue?
(c) If revenue is maximised, how many tickets will be sold?

$\frac{\text { Grid } 4}{[\# 10]}$
Is the vertex.
-a a minimum point

$$
\begin{aligned}
& \text { Sketch } \\
& v(3,4) \\
& a=-2
\end{aligned}\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right]-8
$$

State the following the equation of the
axis of symmetry
the maximum

$$
x=3
$$

$$
x=3
$$

aLL reals
$0=-2(x-3)^{2}+\frac{\text { the } x \text {-intercept }}{\text { (exact values })}$
$\begin{array}{ll}-4=-2(x-3)^{2} \quad x=3 \pm \sqrt{2} \\ 2= & x-3)^{2}\end{array}$
$2=(x-3)^{2}$ Grid 5
$\pm \sqrt{2}=x-3$ [\#11] $y=\frac{1}{2}(x+2)^{2}-2$
Is the vertex...

- a maximum point

State the following..
the equation of the
axis of symmetry
axis of symmetry
$x=-2$

$$
x=-2
$$ the minimum

$$
y=-2
$$

trocleman reals
the x-intercept(s)
$x=-4,0$

the y-intercept
$y=0$

Math 11 . Quadratic Functions

[\#6] Telephone poles are 4 m high and 20 m apart. Cable is connected to the top of each pole and hangs down parabolically between the poles. If the cable's
minimum height is 3 m , how high is the cable 4 m from each pole?

$y=a(x-10)^{2}+3$

$$
4=a(0-10)^{2}+3
$$

$$
y=\frac{1}{100}(4-10)^{2}+3
$$

$$
\begin{aligned}
& 1=100 a \\
& 1
\end{aligned}
$$

$$
y=3.36
$$

$$
3.36 \mathrm{~m}
$$

$P(0,4)$

$$
y=\frac{1}{100}(x-10)^{2}+3
$$

$$
\begin{aligned}
& y=a(x-5)^{2}-3 \\
& -7=a(9-5)^{2}-3 \\
& -7=16 a-3 \\
& \begin{array}{l}
-4=16 a \\
-\frac{1}{4}=a
\end{array} \quad y=-\frac{1}{4}(x-5)^{2}-3 \\
& \frac{-1}{4}=a
\end{aligned}
$$

$$
\begin{aligned}
& y=-\frac{3}{4}(x+4)^{2}+3
\end{aligned}
$$

[\#13] $y=4 x^{2}+32 x$

$$
\begin{aligned}
& y=4\left(x^{2}+8 x\right)+84 \\
& y=4(x+4)^{2}-64
\end{aligned}
$$

[\#14] $y=-\frac{1}{3} x^{2}-2 x-1$

$$
y=-\frac{1}{3}\left(x^{2}+6 x\right)-1
$$

$$
y=\frac{1}{3}(x+3)^{2}+2
$$

[\#15] $y=-4.9 x^{2}+11.76 x+1.6$

$$
y=-4.9\left(x^{2}-2.4 x\right) \pm 1.6
$$

$$
y=-4.9(x-1,2)^{2}+8.656
$$

[\#\#17] $y=4 x^{+}+2 x-1$

$$
\begin{aligned}
& y=4\left(x^{2}+\frac{1}{2} x\right)-1 \\
& y=4\left(x+\frac{1}{4}\right)^{2}-\frac{1}{4}
\end{aligned}
$$

[\#18] $y=\frac{3}{4^{x^{2}}}+2$
it is in graphing form

Math 11. QuadraticFunctions

MAXIMUM MINIMUM PROBLEMS
[\#1 A cannonball is fired into the air. Its height, h in m , is expressed as a function of its horizontal distance from the cannon, x in m.
$h=-0.005 x^{2}+0.4 x+2$
(a) Determine the cannonball's maximum height. 10 m
(b) How far did the cannonball travel horizontally 40 m
(c) How far did the cannonball travel horizontally 84.72 m
when it landed on the ground? when it landed on the ground?

$$
h=-.005 x^{2}+4 x+2
$$

$$
h=-, 005\left(x^{2}-80 x\right)+2
$$

$$
0=-.0 \cos (x-40)^{2}+10
$$

$$
-10=-1005(x-40)^{2}
$$

$$
n=-.005(x-40)^{2}+10
$$

$$
2000=(x-40)^{2}
$$

$$
\pm \sqrt{2000}=x-40
$$

x

[\#2] Fred has 48 m of fence to rope off a rectangular swimming area against the sea wall. He need only rope three sides of the rectangular area. Determine the maximum area he can enclose? $288 \mathrm{~m}^{2}$

$$
\begin{aligned}
& A=l w \\
& A=x(48-2 x) \\
& A=48 x-2 x^{2} \\
& A=-2 x^{2}+48 x
\end{aligned}
$$

$$
A=-2\left(x^{2}-24 x\right)+0
$$

$$
A=-2(x-12)^{2}+288
$$

$$
V\left(\begin{array}{r}
1 \\
\uparrow
\end{array}, 288\right)
$$

[\#3] A team charges $\$ 20$ for a ticket. Usually they sell 120 tickets per game. They owners determined th
price, they'll sell 10 fewer tickets.
In Thad a price, they'll sell 10 fewer tickets.
(b) What ticket price willmaximise revenue? tickets will they seLL?

$$
\begin{aligned}
& \text { REVENUE }=\begin{array}{l}
\text { PRICE NUMBER } \\
\text { PST HEM OF ITEMS } \\
R
\end{array}=(20+5 x)(120-10 x) \\
& R=2400-200 x+600 x-50 x^{2} \\
& R=-50 x^{2}+400 x+2400 \\
& R=-50\left(x^{2}-8 x\right)+2400 \\
& R=-50(x-4)^{2}+3200
\end{aligned}
$$

(c) $120-10(4)$ 80
start with
40 m Fence

three sided rectangle
four sided rectangle

Three sided rectangle with dividing walk

SlOES ATTAINING

